首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of metal catalyst on the mechanism of hydrogen spillover in three-dimensional covalent-organic frameworks
Institution:1.College of Science, Henan University of Technology, Zhengzhou 450000, China;2.Center for Energy Convergence Research, Green City Research Institute, Korea Institute of Science and Technology(KIST), Seoul 02792, Republic of Korea;3.College of Physical and Electronic Information, Luoyang Normal University, Luoyang 471022, China
Abstract:Hydrogen spillover mechanism of metal-supported covalent-organic frameworks COF-105 is investigated by means of the density functional theory, and the effects of metal catalysts M4 (Pt4, Pd4, and Ni4) on the whole spillover process are systematically analyzed. These three metal catalysts exhibit several similar phenomena: (i) they prefer to deposit on the tetra (4-dihydroxyborylphenyl) silane (TBPS) cluster with surface-contacted configuration; (ii) only the H atoms at the bridge site can migrate to 2,3,6,7,10,11-hexahydroxy triphenylene (HHTP) and TBPS surfaces, and the migration process is an endothermic reaction and not stable; (iii) the introduction of M4 catalyst can greatly reduce the diffusion energy barrier of H atoms, which makes it easier for the H atoms to diffuse on the substrate surface. Differently, all of the H2 molecules spontaneously dissociate into H atoms onto Pt4 and Pd4 clusters. However, the adsorbed H2 molecules on Ni4 cluster show two types of adsorption states: one activated state with stretched H-H bond length of 0.88 Å via the Kubas interaction and five dissociated states with separated hydrogen atoms. Among all the M4 catalysts, the orders of the binding energy of M4 deposited on the substrate and average chemisorption energy per H2 molecule are Pt4 > Ni4 > Pd4. On the contrary, the orders of the migration and diffusion barriers of H atoms are Pt4 < Ni4 < Pd4, which indicates that Pt4 is the most promising catalyst for the hydrogen spillover with the lowest migration and diffusion energy barriers. However, the migration of H atoms from Pt4 toward the substrate is still endothermic. Thus direct migration of H atom from metal catalyst toward the substrate is thermodynamically unfavorable.
Keywords:covalent-organic frameworks  hydrogen spillover  hydrogen storage  density functional theory  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号