首页 | 本学科首页   官方微博 | 高级检索  
     检索      


General equation describing viscosity of metallic melts under horizontal magnetic field
Institution:Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract:Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively describe the viscosity of single and binary metallic melts under a horizontal magnetic field. The relationship between the viscosity and the electrical resistivity under the horizontal magnetic field was studied, which can be described as ηB=η+(2H)/(πΩ)B2 (ηB is the viscosity under the horizontal magnetic field, η is the viscosity without the magnetic field, H is the height of the sample, Ω is the electrical resistivity, and B is the intensity of magnetic field). The viscosity under the horizontal magnetic field is proportional to the square of the intensity of the magnetic field, which is in very good agreement with the experimental results. In addition, the proportionality coefficient of ηB and quadratic B, which is related to the electrical resistivity, conforms to the law established that increasing the temperature of the completely mixed melts is accompanied by an increase of the electrical resistivity. We can predict the viscosity of metallic melts under magnetic field by measuring the electrical resistivity based on our equation, and vice versa. This discovery is important for understanding condensed-matter physics under external magnetic field.
Keywords:viscosity  horizontal magnetic field  metallic melts  electrical resistivity  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号