首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study on the dielectric properties of Mg-doped NaBiTi_6O_(14) ceramics
Institution:1.School of Physics and Electronic Science, Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China;2.School of Materials Science and Engineering, Hubei University, Wuhan 430062, China;3.Department of Information Science and Technology, WenHua College, Wuhan 430074, China
Abstract:With the interest in using lead-free materials to replace lead-containing materials increasing, the use of Na0.5Bi0.5TiO3 (NBT) has come into our sight. We studied the composition of NBT and found that NaBiTi6O14 ceramics can be compositionally tuned by Mg-doping on the Ti-site to optimize the dielectric properties. In this study, Mg-doped NaBiTi6O14 (NaBi(Ti0.98Mg0.02)6O14-δ) ceramics were prepared by a conventional mixed oxide route at different sintering temperatures, and their dielectric properties have been studied at a wide temperature range. X-ray diffraction (XRD) patterns of the NBT-based ceramics indicate that all samples have a pure phase without any secondary impurity phase. The experimental data show that after Mg-doping, the relative permittivity and dielectric loss become lower at 1040, 1060, and 1080℃ except 1020℃ and at different frequencies from 10 kHz, 100 kHz to 1 MHz. Take 1060℃ for example, when the sintering temperature is 1060℃ at 1 MHz, the minimum relative permittivity of NaBiTi6O14 is 32.9 and the minimum dielectric loss is 0.01417, the relative permittivity of NaBi(Ti0.98Mg0.02)6O14-δ under the same condition is 25.8 and the dielectric loss is 0.000104. We explored the mechanism of Mg-doping and surprisingly found that the dielectric property of NaBi(Ti0.98Mg0.02)6O14-δ becomes better owing to Mg-doping. Thus, NaBi(Ti0.98Mg0.02)6O14-δ can be used in microwave ceramics and applied to new energy materials.
Keywords:NaBiTi6O14  permittivity  loss (tanδ)  dielectric ceramics  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号