Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components |
| |
Affiliation: | School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China |
| |
Abstract: | The air breakdown is easily caused by the high-power microwave, which can have two mutually orthogonal and heterophase electric field components. For this case, the electron momentum conservation equation is employed to deduce the electric field power and effective electric field for heating electrons. Then the formula of the electric field power is introduced into the global model to simulate the air breakdown. The breakdown prediction from the global model agrees well with the experimental data. Simulation results show that the electron temperature is sensitive to the phase difference between the two electron field components, while the latter can affect obviously the growth of the electron density at low electron temperature amplitudes. The ionization of nitrogen and oxygen induces the growth of electron density, and the density loss due to the dissociative attachment and dissociative recombination is obvious only at low electron temperatures. |
| |
Keywords: | high power microwave air breakdown effective electric field global model |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|