A temperature-dependent order-disorder and crystallographic phase transition in a 0D Fe(II) spin crossover compound and its non-spin crossover Co(II) isomorph |
| |
Authors: | Ross Tamsyn M Moubaraki Boujemaa Wallwork Kia S Batten Stuart R Murray Keith S |
| |
Affiliation: | School of Chemistry, Building 23, Monash University, Clayton, Victoria 3800, Australia. |
| |
Abstract: | The new dipyridylamino/triazine ligand DDE (N(2),N(2),N(4),N(4)-tetraethyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine) has been incorporated into the mononuclear Fe(II) SCO compounds cis-[Fe(II)(NCSe)(2)(DDE)(2)] (1), cis-[Fe(II)(NCBH(3))(2)(DDE)(2)] (2), and cis-[Fe(II)(NCS)(2)(DDE)(2)] (3). Magnetic susceptibility measurements reveal that each of 1, 2 and 3 undergoes a complete, continuous spin transition with a T(?) of ~260 K, ~300 K and ~205 K, respectively. An analogue and isomorph of 1, cis-[Co(II)(NCSe)(2)(DDE)(2)] (4), remains high spin down to low temperatures. Variable temperature single crystal data reveal that 1 and 4 undergo a crystallographic phase transition (from orthorhombic Pbcn at high temperatures to monoclinic P2/c at low temperatures) accompanied by an order-disorder transition of ethyl moieties of the DDE ligand. In the Pbcn phase, the structures of 1 and 4 contain one crystallographically unique M(II) centre, while in the P2/c phase, 1 and 4 contain two crystallographically unique M(II) centres. Variable temperature powder X-ray diffraction experiments reveal that the crystallographic phase transition occurs at ~250 K for 1. The occurrence of the concomitant order-disorder and crystallographic phase transitions undergone by 1 and 4 is not directly apparent in their magnetic susceptibility measurements, and this is likely due to the local environment of the M(II) centres remaining largely undisturbed as the transitions occur. The compound 2 is isostructural to 1 and 4 at low temperatures. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|