首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling and Measurement of a Tunable Acoustoelastic System
Authors:Deborah Fowler  Garrett Lopp  Dhiraj Bansal  Ryan Schultz  Matthew Brake  Micah Shepherd
Abstract:Acoustoelastic coupling occurs when a hollow structure’s in-vacuo mode aligns with an acoustic mode of the internal cavity. The impact of this coupling on the total dynamic response of the structure can be quite severe depending on the similarity of the modal frequencies and shapes. Typically, acoustoelastic coupling is not a design feature, but rather an unintended result that must be remedied as modal tests of structures are often used to correlate or validate finite element models of the uncoupled structure. Here, however, a test structure is intentionally designed such that multiple structural and acoustic modes are well-aligned, resulting in a coupled system that allows for an experimental investigation. First, coupling in the system is identified using a measure termed the magnification factor. Next, the structural-acoustic interaction is measured. Modifications to the system demonstrate the dependency of the coupling on changes in the mode shape and frequency proximity. This includes an investigation of several practical techniques used to decouple the system by altering the internal acoustic cavity, as well as the structure itself. These results show that acoustic absorption material effectively decoupled the structure while structural modifications, in their current form, proved unsuccessful. Readily available acoustic absorptive material was effective in reducing the coupled effects while presumably adding negligible mass or stiffness to the structure.
Keywords:Structural-acoustic interaction  coupled modes  acoustic absorption  acoustic modes  modal testing  
点击此处可从《声与振动》浏览原始摘要信息
点击此处可从《声与振动》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号