首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical predictions of the structure,gas‐phase acidity,and aromaticity of tetrathiosquaric acid
Authors:Lixin Zhou  Chaoyong Mang  Yongfan Zhang  Shengchang Xiang  Zunxing Huang
Abstract:Results of ab initio self‐consistent‐field and density functional theory calculations of the gas‐phase structure, acidity (free energy of deprotonation, ΔG0), and aromaticity of tetrathiosquaric acid (3,4‐dithiohydroxy‐3‐cyclobutene‐1,2‐dithione, H2C4S4) are reported. The global minimum found on the potential energy surface of tetrathiosquaric acid presents a planar conformation. The ZZ isomer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very close in energy. The optimized geometric parameters exhibit a bond length equalization relative to reference compounds, cyclobutanedithione, and cyclobutenedithiol. The computed aromatic stabilization energy by homodesmotic reaction is −18.4 (MP2(fu)/6‐311+G**//RHF/6‐311+G**) and −15.1 kcal/mol (B3LYP//6‐311+G**// B3LYP/6‐311+G**). The aromaticity of tetrathiosquaric acid is indicated by the calculated diamagnetic susceptibility exaltation (Λ) −11.77 (CSGT(IGAIM)‐RHF/6‐311+G**// RHF/6‐311+G**) and −18.08 (CSGT(IGAIM)‐B3LYP/6‐311+G**// B3LYP/6‐311+G**). Thus, tetrathiosquaric acid fulfils the geometric, energetic and magnetic criteria of aromaticity. The most reliable theoretical gas‐phase acidities are $Delta G^{0}_{1(298mathrm{K})}=303.7$equation image and $Delta G^{0}_{2(298mathrm{K})}=394.1$equation image kcal/mol. Hence, tetrathiosquaric acid is a stronger acid than squaric acid (3,4‐dihydroxy‐3‐ cyclobutene‐1,2‐dione, H2C4O4). Comparisons of the computed results of tetrathiosquaric acid with squaric acid have also been made. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 443–449, 2000
Keywords:tetrathiosquaric acid  ab initio  density functional theory (DFT)  gas‐phase acidity  aromaticity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号