Abstract: | A detailed mathematical model of the kinetics of styrene emulsion polymerization has been proposed. Its main features/assumptions are compartmentalization, micellar and homogeneous nucleation, particle formation by both initiator‐derived and desorbed radicals, dependence on the particle size of the rate coefficients, thermodynamic considerations, and aqueous phase kinetics. The model predicts that micellar nucleation dominates over homogeneous nucleation and that the evolution of the nucleation rate reaches a maximum, where desorbed radicals have an important contribution. Initiator‐derived radicals with only one monomeric unit have also a significant contribution on the rate of capture in particles. The results suggest that the correctness of the instantaneous termination approach depends not only on the size of the particle, but also on the type of entering radical (initiator‐derived or monomeric). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2201–2218, 2000 |