首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A matrix‐free preconditioned Newton/GMRES method for unsteady Navier–Stokes solutions
Authors:Ning Qin  David K Ludlow  Scott T Shaw
Abstract:The unsteady compressible Reynolds‐averaged Navier–Stokes equations are discretized using the Osher approximate Riemann solver with fully implicit time stepping. The resulting non‐linear system at each time step is solved iteratively using a Newton/GMRES method. In the solution process, the Jacobian matrix–vector products are replaced by directional derivatives so that the evaluation and storage of the Jacobian matrix is removed from the procedure. An effective matrix‐free preconditioner is proposed to fully avoid matrix storage. Convergence rates, computational costs and computer memory requirements of the present method are compared with those of a matrix Newton/GMRES method, a four stage Runge–Kutta explicit method, and an approximate factorization sub‐iteration method. Effects of convergence tolerances for the GMRES linear solver on the convergence and the efficiency of the Newton iteration for the non‐linear system at each time step are analysed for both matrix‐free and matrix methods. Differences in the performance of the matrix‐free method for laminar and turbulent flows are highlighted and analysed. Unsteady turbulent Navier–Stokes solutions of pitching and combined translation–pitching aerofoil oscillations are presented for unsteady shock‐induced separation problems associated with the rotor blade flows of forward flying helicopters. Copyright © 2000 John Wiley & Sons, Ltd.
Keywords:GMRES  matrix‐free  Newton  precondition  transonic  unsteady
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号