首页 | 本学科首页   官方微博 | 高级检索  
     


Ethylbenzene solubility,diffusivity, and permeability in poly(dimethylsiloxane)
Authors:S. V. Dixon‐Garrett  K. Nagai  B. D. Freeman
Abstract:The pure‐gas sorption, diffusion, and permeation properties of ethylbenzene in poly(dimethylsiloxane) (PDMS) are reported at 35, 45, and 55 °C and at pressures ranging from 0 to 4.4 cmHg. Additionally, mixed‐gas ethylbenzene/N2 permeability properties at 35 °C, a total feed pressure of 10 atm, and a permeate pressure of 1 atm are reported. Ethylbenzene solubility increases with increasing penetrant relative pressure and can be described by the Flory–Rehner model with an interaction parameter of 0.24 ± 0.02. At a fixed relative pressure, ethylbenzene solubility decreases with increasing temperature, and the enthalpy of sorption is −41.4 ± 0.3 kJ/mol, which is independent of ethylbenzene concentration and essentially equal to the enthalpy of condensation of pure ethylbenzene. Ethylbenzene diffusion coefficients decrease with increasing concentration at 35 °C. The activation energy of ethylbenzene diffusion in PDMS at infinite dilution is 49 ± 6 kJ/mol. The ethylbenzene activation energies of permeation decrease from near 0 to −34 ± 7 kJ/mol as concentration increases, whereas the activation energy of permeation for pure N2 is 8 ± 2 kJ/mol. At 35 °C, ethylbenzene and N2 permeability coefficients determined from pure‐gas permeation experiments are similar to those obtained from mixed‐gas permeation experiments, and ethylbenzene/N2 selectivity values as high as 800 were observed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1461–1473, 2000
Keywords:polydimethylsiloxane  ethylbenzene  sorption  diffusion, permeation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号