首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Background-Free Detection of Spin-Exchange Dynamics at Ultra-Low Magnetic Field
Authors:Michele Kelley  Nicholas Bryden  Sebastian William Atalla  Rosa Tamara Branca
Institution:University of North Carolina at Chapel Hill, Chapel Hill, NC, U.S.
Abstract:Ultra-low field nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI) inherently suffer from a low signal-to-noise ratio due to the small thermal polarization of nuclear spins. Transfer of polarization from a pre-polarized spin system to a thermally polarized spin system via the Spin Polarization Induced Nuclear Overhauser Effect (SPINOE) could potentially be used to overcome this limitation. SPINOE is particularly advantageous at ultra-low magnetic field, where the transferred polarization can be several orders of magnitude higher than thermal polarization. Here we demonstrate direct detection of polarization transfer from highly polarized 129Xe gas spins to 1H spins in solution via SPINOE. At ultra-low field, where thermal nuclear spin polarization is close to background noise levels and where different nuclei can be simultaneously detected in a single spectrum, the dynamics of the polarization transfer can be observed in real time. We show that by simply bubbling hyperpolarized 129Xe into solution, we can enhance 1H polarization levels by a factor of up to 151-fold. While our protocol leads to lower enhancements than those previously reported under extreme Xe gas pressures, the methodology is easily repeatable and allows for on-demand enhanced spectroscopy. SPINOE at ultra-low magnetic field could also be employed to study 129Xe interactions in solutions.
Keywords:Spin Polarization Induced Nuclear Overhauser effect  hyperpolarized 129Xe  cross-relaxation  polarization transfer  SPINOE
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号