首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical Study of the Hydroxyl-Radical-Initiated Degradation Mechanism,Kinetics, and Subsequent Evolution of Methyl and Ethyl Iodides in the Atmosphere
Authors:Xiang-Huan Liu  Feng-Yang Bai  Ting-Ting Meng  Dr Shuang Ni  Prof Dr Zhen Zhao
Institution:Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034 People's Republic of China
Abstract:The degradation and transformation of iodinated alkanes are crucial in the iodine chemical cycle in the marine boundary layer. In this study, MP2 and CCSD(T) methods were adopted to study the atmospheric transformation mechanism and degradation kinetic properties of CH3I and CH3CH2I mediated by ⋅OH radical. The results show that there are three reaction mechanisms including H-abstraction, I-substitution and I-abstraction. The H-abstraction channel producing ⋅CH2I and CH3C ⋅ HI radicals are the main degradation pathways of CH3I and CH3CH2I, respectively. By means of the variational transition state theory and small curvature tunnel correction method, the rate constants and branching ratios of each reaction are calculated in the temperature range of 200–600 K. The results show that the tunneling effect contributes more to the reaction at low temperatures. Theoretical reaction rate constants of CH3I and CH3CH2I with ⋅OH are calculated to be 1.42×10−13 and 4.44×10−13 cm3 molecule−1 s−1 at T=298 K, respectively, which are in good agreement with the experimental values. The atmospheric lifetimes of CH3I and CH3CH2I are evaluated to be 81.51 and 26.07 day, respectively. The subsequent evolution mechanism of ⋅CH2I and CH3C ⋅ HI in the presence of O2, NO and HO2 indicates that HCHO, CH3CHO, and I-atom are the main transformation end-products. This study provides a theoretical basis for insight into the diurnal conversion and environmental implications of iodinated alkanes.
Keywords:iodinated alkanes  transformation mechanism  atmospheric lifetime  degradation kinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号