首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering Pichia pastoris for Efficient Production of a Novel Bifunctional Strongylocentrotus purpuratus Invertebrate-Type Lysozyme
Authors:Peng Huang  Jinlei Shi  Qingwen Sun  Xianping Dong  Ning Zhang
Affiliation:1.School of Clinical Medicine,Shanghai University of Medicine and Health Sciences,Shanghai,China;2.School of Life Science and Technology,ShanghaiTech University,Shanghai,China;3.School of Life Sciences,Fudan University,Shanghai,China;4.Department of Physiology and Biophysics,Dalhousie University,Halifax,Canada
Abstract:Lysozymes are known as ubiquitously distributed immune effectors with hydrolytic activity against peptidoglycan, the major bacterial cell wall polymer, to trigger cell lysis. In the present study, the full-length cDNA sequence of a novel sea urchin Strongylocentrotus purpuratus invertebrate-type lysozyme (sp-iLys) was synthesized according to the codon usage bias of Pichia pastoris and was cloned into a constitutive expression plasmid pPIC9K. The resulting plasmid, pPIC9K-sp-iLys, was integrated into the genome of P. pastoris strain GS115. The bioactive recombinant sp-iLys was successfully secreted into the culture broth by positive transformants. The highest lytic activity of 960 U/mL of culture supernatant was reached in fed-batch fermentation. Using chitin affinity chromatography and gel-filtration chromatography, recombinant sp-iLys was produced with a yield of 94.5 mg/L and purity of >?99%. Recombinant sp-iLys reached its peak lytic activity of 8560 U/mg at pH 6.0 and 30 °C and showed antimicrobial activities against Gram-negative bacteria (Vibrio vulnificus, Vibrio parahemolyticus, and Aeromonas hydrophila) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). In addition, recombinant sp-iLys displayed isopeptidase activity which reached the peak at pH 7.5 and 37 °C with the presence of 0.05 M Na+. In conclusion, this report describes the heterologous expression of recombinant sp-iLys in P. pastoris on a preparative-scale, which possesses lytic activity and isopeptidase activity. This suggests that sp-iLys might play an important role in the innate immunity of S. purpuratus.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号