首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bi-Objective Median Subtree Location Problems
Authors:JW George  CS ReVelle
Institution:(1) Maryland Department of the Environment, 1800 Washington Blvd., Baltimore, MD 21230, USA;(2) Department of Geography and Environmental Engineering, The Johns Hopkins University, Ames Hall, Baltimore, MD 21218, USA
Abstract:A number of network design problems can be built on the following premise: given an undirected tree network, T, with node set, V, identify a single subtree, t, containing nodes, v, so that the subtree is located optimally with respect to the remaining, subset of unconnected nodes {Vv}. Distances between unconnected nodes and nodes in the subtree t can be defined on paths that are restricted to lie in the larger tree T (the restricted case), or can be defined on paths in an auxiliary complete graph G (the unrestricted case). The unrestricted case represents a class of problems that is not explicitly recognized in the literature, which is of intermediate complexity relative to the widely studied restricted case, and the general problem in which the underlying graph is general. This paper presents the Median Subtree Location Problem (MSLP), formulated as a bicriterion problem that trades off the cost of a subtree, t, against the population-weighted travel distance from the unconnected nodes to nodes on the subtree where both objectives are to be minimized. Integer programs were formulated for the travel restricted and travel unrestricted cases and were tested using linear programming and branch and bound to resolve fractions. Tradeoff curves between cost and travel burden were developed for sample networks.
Keywords:network design  median  tree  extensive facility location  structure location  multiobjective
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号