Validation of Solutions of Construction Problems in Dynamic Geometry Environments |
| |
Authors: | Gabriel J. Stylianides and Andreas J. Stylianides |
| |
Affiliation: | (1) School of Education, The University of Michigan, 610 East University Avenue, Arbor, MI, 48109-1259, USA |
| |
Abstract: | This paper discusses issues concerning the validation of solutions of construction problems in Dynamic Geometry Environments (DGEs) as compared to classic paper-and-pencil Euclidean geometry settings. We begin by comparing the validation criteria usually associated with solutions of construction problems in the two geometry worlds – the ‘drag test’ in DGEs and the use of only straightedge and compass in classic Euclidean geometry. We then demonstrate that the drag test criterion may permit constructions created using measurement tools to be considered valid; however, these constructions prove inconsistent with classical geometry. This inconsistency raises the question of whether dragging is an adequate test of validity, and the issue of measurement versus straightedge-and-compass. Without claiming that the inconsistency between what counts as valid solution of a construction problem in the two geometry worlds is necessarily problematic, we examine what would constitute the analogue of the straightedge-and-compass criterion in the domain of DGEs. Discovery of this analogue would enrich our understanding of DGEs with a mathematical idea that has been the distinguishing feature of Euclidean geometry since its genesis. To advance our goal, we introduce the compatibility criterion, a new but not necessarily superior criterion to the drag test criterion of validation of solutions of construction problems in DGEs. The discussion of the two criteria anatomizes the complexity characteristic of the relationship between DGEs and the paper-and-pencil Euclidean geometry environment, advances our understanding of the notion of geometrical constructions in DGEs, and raises the issue of validation practice maintaining the pace of ever-changing software. |
| |
Keywords: | drag test Dynamic Geometry Environments (DGEs) Euclidean geometry geometrical constructions proof validation of construction problems |
本文献已被 SpringerLink 等数据库收录! |
|