首页 | 本学科首页   官方微博 | 高级检索  
     检索      

镍掺杂石墨相氮化碳的熔盐辅助微波法制备及光催化固氮性能
引用本文:曲晓钰,胡绍争,李萍,王菲,赵艳锋,王琼.镍掺杂石墨相氮化碳的熔盐辅助微波法制备及光催化固氮性能[J].高等学校化学学报,2017,38(12).
作者姓名:曲晓钰  胡绍争  李萍  王菲  赵艳锋  王琼
作者单位:辽宁石油化工大学化学化工与环境学部,抚顺,113001
基金项目:国家自然科学基金,辽宁省自然科学基金(批准号: 201602467)资助. Supported by the National Natural Science Foundation of China,the Natural Science Foundation of Liaoning Province
摘    要:采用熔盐辅助微波法制备了可见光下具有优越光催化固氮性能的镍掺杂石墨相氮化碳.采用X射线衍射(XRD)、扫描电镜(SEM)、氮气吸附-脱附、紫外-可见光谱(UV-Vis)、X射线光电子能谱(XPS)、荧光光谱(PL)、程序升温脱附(TPD)和电化学阻抗谱(EIS)等手段对催化剂进行了表征.结果表明,熔盐辅助微波法使氮化碳催化剂从层状结构变为纳米颗粒状,并相互紧密堆积形成很多二次孔,增大了催化剂的比表面积.同时,在催化剂制备过程中,熔盐包裹住了催化剂原料,避免了镍离子与氧气的接触,使镍离子呈现出活性的Ni(Ⅰ)—N态和非活性的氧化镍态2种存在形式.Ni(Ⅰ)—N作为反应活性中心,能有效捕获光电子,提高电子-空穴分离效率,促进电子从掺杂镍离子向N2分子的迅速转移,实现氮气分子的活化,进而提高固氮性能.

关 键 词:熔盐辅助微波合成  石墨相氮化碳  Ni—N活性位  光催化固氮

Molten Salt-assisted Microwave Synthesis and Nitrogen Photofixation Ability of Nickel Doped Graphitic Carbon Nitride
QU Xiaoyu,HU Shaozheng,LI Ping,WANG Fei,ZHAO Yanfeng,WANG Qiong.Molten Salt-assisted Microwave Synthesis and Nitrogen Photofixation Ability of Nickel Doped Graphitic Carbon Nitride[J].Chemical Research In Chinese Universities,2017,38(12).
Authors:QU Xiaoyu  HU Shaozheng  LI Ping  WANG Fei  ZHAO Yanfeng  WANG Qiong
Abstract:In this work, nickel doped g-C3N4 was synthesized via a novel molten salt-assisted microwave process. X-ray diffraction(XRD), N2 adsorption, UV-Vis spectroscopy, scanning electron microscopy(SEM), temperature-programmed desorption(TPD), X-ray electron spectroscopy(XPS), photoluminescence spectros-copy(PL) and electrochemical impedance spectroscopy(EIS) were used to characterize the prepared catalysts. The results show that the molten salt-assisted microwave process changes the morphology of prepared catalyst from layered structure to nanoparticles. These nanoparticles are closely packed with each other to form many secondary pores, which increases the catalyst surface area. Besides, due to that the raw materials are wrapped by the liquid-phase molten salt during the microwave process and can not be in contact with oxygen, Ni is not only present as inactive oxide but inserts at the interstitial position to form active Ni(Ⅰ)—N bonds. This Ni(Ⅰ)—N active sites can activate N2 molecules, promote separation rate of electrons and holes, and accelerate interfacial charge transfer from catalysts to N2 molecules, thus significantly improving the nitrogen photofixation ability.
Keywords:Molten salt assisted microwave synthesis  g-C3N4  Ni(Ⅰ)—N active site  N2 photofixation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号