首页 | 本学科首页   官方微博 | 高级检索  
     

Na+掺杂锂离子电池正极材料LiNi0.6 Co0.2 Mn0.2 O2的制备及电化学性能
引用本文:郑卓,吴振国,向伟,滑纬博,郭孝东. Na+掺杂锂离子电池正极材料LiNi0.6 Co0.2 Mn0.2 O2的制备及电化学性能[J]. 高等学校化学学报, 2017, 38(8): 1458. DOI: 10.7503/cjcu20160781
作者姓名:郑卓  吴振国  向伟  滑纬博  郭孝东
作者单位:1. 四川大学高分子研究所, 成都 610065;2. 四川大学化学工程学院, 成都 610065;3. 成都理工大学材料与化学化工学院, 成都 610059;4. 伍伦贡大学超导与电子材料研究所, 伍伦贡 2522, 澳大利亚
基金项目:国家自然科学基金(批准号: 21506133)资助.Supported by the National Natural Science Foundation of China
摘    要:采用草酸盐共沉淀法制备了钠掺杂改性的Li0.98Na0.02Ni0.6Co0.2Mn0.2O2正极材料,借助X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量分散谱(EDS)、感应耦合等离子体原子发射光谱(ICP-AES)、电化学阻抗谱(EIS)和恒电流充放电测试等手段对材料的颗粒形貌、晶体结构和电化学性能进行了研究.结果表明,掺钠后的材料具有更完善的α-NaFeO2结构(空间群为+/Ni2+阳离子混排和更大的Li层间距,易于Li+在晶格中的快速脱嵌迁移.电化学性能测试结果证实掺钠样品具有优异的循环稳定性和高倍率性能,在2.7~4.3 V,1C下循环100次后,放电比容量仍为146 mA·h/g(容量保持率为95.4%),在0.1C,0.2C,0.5C,1C,3C,5C,10C和20C时的放电比容量分别为181,168,162,155,143,136,126和113 mA·h/g.

关 键 词:钠掺杂正极材料  锂离子扩散通道  电化学性能  锂离子电池  
收稿时间:2016-11-09

Preparation and Electrochemical Performance of Na+-stabilized Layered LiNi0.6Co0.2Mn0.2O2 Cathode Material for Lithium-ion Batteries
ZHENG Zhuo,WU Zhenguo,XIANG Wei,HUA Weibo,GUO Xiaodong. Preparation and Electrochemical Performance of Na+-stabilized Layered LiNi0.6Co0.2Mn0.2O2 Cathode Material for Lithium-ion Batteries[J]. Chemical Research In Chinese Universities, 2017, 38(8): 1458. DOI: 10.7503/cjcu20160781
Authors:ZHENG Zhuo  WU Zhenguo  XIANG Wei  HUA Weibo  GUO Xiaodong
Affiliation:1. Polymer Research Institute, Sichuan University, Chengdu 610065, China;2. School of Chemical Engineering, Sichuan University, Chengdu 610065, China;3. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China;4. Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong New South Wales(NSW)2522, Australia
Abstract:Na-doped Li0.98Na0.02Ni0.6Co0.2Mn0.2O2 cathode material was synthesized through a simple oxalate co-precipitation.Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive X-ray spectroscopy(EDS), inductively coupled plasma-atomic emission spectrometry(ICP-AES), electrochemical impedance spectroscopy(EIS) and galvanostatic charge-discharge tests were employed to analyze the particle morphology, crystal structure and electrochemical properties of the as-prepared materials.Results indicate that the Na-stabilized sample has a more ordered α-NaFeO2 structure(space group R3m), reduced Li+/Ni2+ cation mixing and enlarged Li layer spacing, which facilitates the fast insertion and extraction of Li+ ions in the bulk structure.Electrochemical results confirm that the Na-stabilized sample has excellent cycling stability and high rate performance.After 100 cycles at 1C between 2.7 V and 4.3 V, the cathode delivers a discharge capacity of 146 mA·h/g with capacity retention of 95.4%.At 0.1C, 0.2C, 0.5C, 1C, 3C, 5C, 10C and 20C, the specific capacities of the material are 181, 168, 162, 155, 143, 136, 126 and 113 mA·h/g, respectively.The Na-doping method is facile and feasible, which can provide some valuable reference for synthesizing other high rate and high capacity layered anode/cathode oxides.
Keywords:Na-doped cathode material  Li+ diffusion path  Electrochemical performance  Lithium-ion battery
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号