首页 | 本学科首页   官方微博 | 高级检索  
     


Defect clusters and precipitation/oxidation of MgO-Co1−xO solid solution
Authors:T.M. Tsai
Affiliation:Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan, ROC
Abstract:MgO and Co1−xO powders in 9:1 and 1:9 molar ratio (denoted as M9C1 and M1C9, respectively) were sintered and homogenized at 1600°C followed by annealing at 850°C and 800°C, respectively to form defect clusters and precipitates. Analytical electron microscopic observations indicated the protoxide remained as rock salt structure with complicated planar diffraction contrast for M9C1 sample, however with spinel paracrystal precipitated from the M1C9 sample due to the assembly of charge- and volume-compensating defects of the 4:1 type, i.e., four octahedral vacant sites surrounding one Co3+-filled tetrahedral interstitial site. The spacing of such defect clusters is 4.5 times the lattice spacing of the average spinel structure of Mg-doped Co3−δO4, indicating a higher defect cluster concentration than undoped Co3−δO4. The {111} faulting of Mg-doped Co3−δO4/Co1−xO in the annealed M1C9 sample implies the possible presence of zinc blend-type defect clusters with cation vacancies assembled along oxygen close packed (111) plane.
Keywords:Co1&minus  xO,MgO   Solid solution   Mg-doped Co3&minus  δO4 spinel   Defect clusters   Paracrystal   Fault   AEM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号