首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic study of the thermal inactivation of glucose oxidase in the presence of denaturant and stabilizer by means of bioelectrocatalysis method
Authors:Katano Hajime  Sugimoto Yuka  Uematsu Kohei  Hibi Takao
Institution:Faculty of Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, Japan. hajime@fpu.ac.jp
Abstract:The thermal inactivation of glucose oxidase (GOD) in aqueous solution has been studied by the electrochemical method to follow the bioelectrocatalytic current due to the oxidation of glucose by GOD. Exponential time-dependent decrease in bioelectrocatalytic current, that is, the decrease in the enzymatic activity of GOD, was observed at given temperatures to determine the rate constant (k) of a simple inactivation process: GOD (active) → GOD (inactive). The lnk] vs. T(-1) plots gave straight lines with all solution conditions tested, so that the resulting Arrhenius activation parameters including ΔH(?) and ΔS(?) can be compared with each other. In the 50 mmol/L phosphate buffer at 70°C, k was determined to be (6.6 ± 1.6)× 10(-4) s(-1), and ΔH(?) and ΔS(?) were calculated to be 202 ± 13 kJ mol(-1) and 282 ± 39 J K(-1) mol(-1), respectively. By addition of 3 mol/L guanidine hydrochloride, the k was increased to (4.7 ± 0.6)× 10(-3) s(-1), indicating that the denaturant accelerates the thermal inactivation. In this case, ΔH(?) was significantly reduced. By addition of 1 g/L ε-poly-L-lysine, which may adsorb onto the GOD surface to reduce the local disorder, k was decreased to (1.8 ± 0.6)× 10(-4) s(-1). In this case, ΔS(?) was reduced but ΔH(?) was not decreased much. This can be used as an important indication for selection of the enzyme stabilizer in solution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号