首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations
Authors:J Yang  M Dolg
Institution:(1) Institute of Theoretical Chemistry, University of Cologne, Greinstr. 4, D-50939 Cologne, Germany
Abstract:Crystal orbital adapted Gaussian (4s4p3d), (5s5p4d) and (6s6p5d) valence primitive basis sets have been derived for calculating periodic bulk materials containing trivalent lanthanide ions modeled with relativistic energy-consistent 4f-in-core lanthanide pseudopotentials of the Stuttgart-Koeln variety. The calibration calculations of crystalline A-type Pm2O3 using different segmented contraction schemes (4s4p3d)/2s2p2d], (4s4p3d)/3s3p2d], (5s5p4d)/2s2p2d], (5s5p4d)/3s3p3d], (5s5p4d)/4s4p3d], (6s6p5d)/2s2p2d], (6s6p5d)/3s3p3d] and (6s6p5d)/4s4p4d] are discussed at both Hartree–Fock (HF) and density functional theory (DFT) levels for the investigation of basis set size effects. Applications to the geometry optimization of A-type Ln2O3 (Ln = La-Pm) show a satisfactory agreement with experimental data using the lanthanide valence basis sets (6s6p5d)/4s4p4d] and the standard set 6-311G* for oxygen. The corresponding augmented sets (8s7p6d)/6s5p5d] with additional diffuse functions for describing neutral lanthanide atoms were applied to calculate atomic energies of free lanthanide atoms for the evaluation of cohesive energies for A-Ln2O3 within both conventional Kohn-Sham DFT and the a posteriori-HF correlation DFT schemes.
Keywords:Valence basis set  Pseudopotential  Ab initio calculation  Crystal orbital  Lanthanide sesquioxide  Cohesive energy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号