首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polymer-solid contacts described by soft, coarse-grained models
Authors:Müller Marcus  Steinmüller Birger  Daoulas Kostas Ch  Ramírez-Hernández Abelardo  de Pablo Juan J
Institution:Institut für Theoretische Physik, Georg-August-Universit?t, 37077 G?ttingen, Germany. mmueller@theorie.physik.uni-goettingen.de
Abstract:The ability of soft, coarse-grained models to describe the narrow interface of a nearly incompressible polymer melt in contact with a solid is explored by numerical self-consistent field calculations and Monte-Carlo simulations. We investigate the effect of the discreteness of the bead-spring architecture by quantitatively comparing the results of a bead-spring model with different number of beads, N, but identical end-to-end distance, R(e), and a continuous Gaussian-thread model. If the width, ξ, of the narrow polymer-solid contact is smaller or comparable to the length of a statistical segment, b=R(e)/√N-1, strong differences in the interface tension and the density profiles between the two models are observed, and strategies for compensating the discrete nature of the bead-spring model are investigated. Compensating the discretization of the chain contour in the bead-spring model by applying an external segment-solid potential, we simultaneously adjust the interface tension and the density profile to the predictions of the Gaussian-thread model. We suggest that the geometry of the polymer-solid contact and the interface tension are relevant characteristics that a coarse-grained model of polymer-solid contacts must reproduce in order to establish a quantitative relationship to an experimental system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号