首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polarizability response in polar solvents: molecular-dynamics simulations of acetonitrile and chloroform
Authors:Elola M Dolores  Ladanyi Branka M
Institution:Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. dolores@simla.colostate.edu
Abstract:The relaxation of the many-body polarizability in liquid acetonitrile and chloroform at room temperature was studied by molecular-dynamics simulations. The collective polarizability induced by intermolecular interactions was included using first- and all-orders dipole-induced-dipole models and calculated considering both molecule-centered and distributed site polarizabilities. The anisotropic response was analyzed using a separation scheme that allows a decomposition of the total response in terms of orientational and collision-induced effects. We found the method effective in approximately separating the contributions of these relaxation mechanisms, although the orientational-collision-induced interference makes a non-negligible contribution to the total response. In both liquids the main contribution to the anisotropic response is due to orientational dynamics, but intermolecular collision-induced (or translational) effects are important, especially at short times. We found that higher-order interaction-induced effects were essentially negligible for both liquids. Larger differences were found between the center-center and site-site models, with the latter showing faster polarizability relaxation and better agreement with experiment. Isotropic and anisotropic spectra were computed from the corresponding time correlation functions. The lowest-frequency contributions are largely suppressed in the isotropic spectra and their overall shape is similar to the purely collision-induced contribution to the anisotropic spectra, but with an amplitude which is smaller by a factor of approximately 5 in acetonitrile and approximately 3 in chloroform.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号