首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations
Authors:Galamba N  de Castro C A Nieto  Ely James F
Institution:Departamento de Química e Bioquímica e Centro de Ciências Moleculares e Materiais, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal.
Abstract:The shear viscosity of molten NaCl and KCl was calculated through equilibrium (EMD) and nonequilibrium molecular-dynamics (NEMD) simulations in the canonical (N,V,T) ensemble. Two rigid-ion potentials were investigated, namely, the Born-Mayer-Huggins-Tosi-Fumi potential and the Michielsen-Woerlee-Graaf-Ketelaar potential with the parameters proposed by Ladd. The NEMD simulations were performed using the SLLOD equations of motion D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984)] with a Gaussian isokinetic thermostat and the results are compared with those obtained from Green-Kubo EMD (N,V,T) simulations and experimental shear viscosity data. The NEMD zero strain rate shear viscosity, eta(0), was obtained by fitting a simplified Carreau-type equation and by application of mode-coupling theory, i.e., a eta-gamma(1/2) linear relationship. The values obtained from the first method are found to be significantly lower than those predicted by the second. The agreement between the EMD and NEMD results with experimental data is satisfactory for the two potentials investigated. The ion-ion radial distribution functions obtained with the two rigid-ion potentials for both molten salts are discussed in terms of the differences between the two models.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号