首页 | 本学科首页   官方微博 | 高级检索  
     检索      

载体焙烧温度对Rh-Mn-Li/SBA-15催化CO加氢性能的影响
引用本文:薛飞,何纪敏,陈维苗,宋宪根,程显波,丁云杰.载体焙烧温度对Rh-Mn-Li/SBA-15催化CO加氢性能的影响[J].物理化学学报,2016,32(11):2769-2775.
作者姓名:薛飞  何纪敏  陈维苗  宋宪根  程显波  丁云杰
作者单位:1 中国科学院大连化学物理研究所,洁净能源国家实验室(筹),辽宁大连1160232 中国科学院大连化学物理研究所,催化重点国家实验室,辽宁大连1160233 中国科学院大学,北京1000494 浙江树人大学,杭州310015
基金项目:the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA070500);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020400)
摘    要:SBA-15分别于550、700、800和900℃进行焙烧,然后以等体积共浸渍法将Rh、Mn和Li负载其上。催化剂的性能用CO加氢反应进行评价。催化剂分别用N2物理吸附、X射线衍射、透射电子显微镜、H2化学吸附和傅里叶变换红外光谱进行表征。即使在900℃下进行焙烧,SBA-15的结构仍得到保持。但是,当焙烧温度从550℃升高到900℃,SBA-15的比表面积、孔径和总孔容分别从842.6 m2·g-1、9.57 nm和1.18 cm3·g-1降到246.4 m2·g-1、5.62 nm和0.34 cm3·g-1。此外,Rh颗粒的尺寸都在1.5-4.0 nm范围内,并且随着载体的焙烧温度增加而增加。另外,Rh颗粒更倾向位于高温焙烧载体的介孔内,这可能是因为经过高温焙烧,载体微孔下降。所以,H2和CO更易与负载在高温焙烧后的载体上的Rh颗粒接触。因此,当载体焙烧温度达到900℃时,Rh-Mn-Li/SBA-15催化剂有非常高的C2+含氧化合物的活性和选择性。

关 键 词:  合成气  CO加氢  C2+含氧化合物  焙烧温度  SBA-15  
收稿时间:2016-05-26

Effect of the Calcination Temperature of the Support on the Performance of Rh-Mn-Li/SBA-15 Catalysts for CO Hydrogenation
Fei XUE,Ji-Min HE,Wei-Miao CHEN,Xian-Gen SONG,Xian-Bo CHENG,Yun-Jie DING.Effect of the Calcination Temperature of the Support on the Performance of Rh-Mn-Li/SBA-15 Catalysts for CO Hydrogenation[J].Acta Physico-Chimica Sinica,2016,32(11):2769-2775.
Authors:Fei XUE  Ji-Min HE  Wei-Miao CHEN  Xian-Gen SONG  Xian-Bo CHENG  Yun-Jie DING
Institution:1. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China;2. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China;3. University of Chinese Academy of Sciences, Beijing 100049, P. R. China;4. Zhejiang Shuren University, Hangzhou 310015, P. R. China
Abstract:Rh, Mn and Li were supported on SBA-15 samples that had been calcined at 550, 700, 800, and 900℃, using an incipient co-impregnation technique. The catalytic performances of these materials were subsequently evaluated for the hydrogenation of carbon monoxide. The catalysts were characterized by means of N2 adsorption-desorption, X-ray diffraction, transmission electron microscopy, H2 chemisorption, and Fourier transform infrared spectroscopy. The structure of the SBA-15 support remained unchanged even after its calcination at 900℃. However, the specific surface area, pore size, and total pore volume of SBA-15 decreased from 842.6 m2·g-1, 9.57 nm, and 1.18 cm3·g-1 to 246.4 m2·g-1, 5.62 nm, and 0.34 cm3·g-1, respectively, when the calcination temperature increased from 550 to 900℃. In addition, the Rh particle size increased in the range of 1.5-4.0 nm with increasing calcination temperature. Furthermore, the Rh particles showed a greater tendency towards the mesopores of support when they were calcined at high temperatures, which could be attributed to the reduced number of micropores. These changes therefore made it easier for H2 and CO to interact with the Rh particles immobilized on the supports calcined at high temperatures. High levels of activity and selectivity towards C2+ oxygenates were therefore obtained on the Rh-Mn-Li/SBA-15 prepared using the SBA-15 calcined at 900℃.
Keywords:Rhodium  Syngas  COhydrogenation  C2+ oxygenates  Calcination temperature  SBA-15  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号