首页 | 本学科首页   官方微博 | 高级检索  
     

理论研究BBPQ-PC61BM体系的光伏性质
引用本文:赵蔡斌,葛红光,张强,靳玲侠,王文亮,尹世伟. 理论研究BBPQ-PC61BM体系的光伏性质[J]. 物理化学学报, 2016, 32(10): 2503-2510. DOI: 10.3866/PKU.WHXB201607051
作者姓名:赵蔡斌  葛红光  张强  靳玲侠  王文亮  尹世伟
作者单位:1 陕西理工学院化学与环境科学学院,陕西省催化基础与应用重点实验室,陕西汉中7230002 陕西师范大学化学化工学院,陕西省大分子科学重点实验室,西安710062
基金项目:The project was supported by the National Natural Science Foundation of China(21373132,21502109);Doctor Research Start Foundation of Shaanxi University of Technology, China(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10);and Education Department of Shaanxi Provincial Government Research Projects, China(16JK1142)
摘    要:探索和制备具有高能量转换效率(PCE)的有机太阳能电池体系是有机电子学的重要领域和研究热点。本文利用量子化学和分子动力学计算结合Marcus-Hush电荷传输模型理论研究了BBPQ-PC61BM(BBPQ:7,12-二((三异丙基甲硅烷基)乙炔基)苯并(g)吡啶并(2’,3’:5,6)吡嗪并(2,3-b)喹喔啉-2(1H)-酮;PC61BM:(6,6)苯基-C61-丁酸甲酯)体系的光伏性质。结果表明,BBPQ-PC61BM体系具有相当大的开路电压(1.22 V)、高的填充因子(0.90)和高的光电转换效率(9%-10%)。此外,本文研究还发现BBPQ-PC61BM体系拥有中等大小的激子结合能(0.607 eV),但相对较小的激子分离和电荷复合重组能(0.345和0.355 eV)。借助于一个简单的分子复合物模型,本文预测BBPQ-PC61BM体系的激子解离速率常数kdis高达1.775×1013 s-1,而预测的电荷复合速率常数krec相当小(<1.0 s-1),这表明在BBPQ-PC61BM相界面上,激子解离效率非常高。总之,理论研究表明,BBPQ-PC61BM是一个非常有前途的有机太阳能电池候选体系,值得实验上做出进一步研究。

关 键 词:BBPQ  PC61BM  理论研究  光伏性质  密度泛函理论  
收稿时间:2016-05-13

Theoretical Investigation on Photovoltaic Properties of the BBPQ-PC61BM System
Cai-Bin ZHAO,Hong-Guang GE,Qiang ZHANG,Ling-Xia JIN,Wen-Liang WANG,Shi-Wei YIN. Theoretical Investigation on Photovoltaic Properties of the BBPQ-PC61BM System[J]. Acta Physico-Chimica Sinica, 2016, 32(10): 2503-2510. DOI: 10.3866/PKU.WHXB201607051
Authors:Cai-Bin ZHAO  Hong-Guang GE  Qiang ZHANG  Ling-Xia JIN  Wen-Liang WANG  Shi-Wei YIN
Affiliation:1. Shaanxi Province Key Laboratory of Catalytic Fundamentals and Applications, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, Shaanxi Province, P. R. China;2. Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
Abstract:Exploring and fabricating organic solar cell devices with the high power conversion efficiency (PCE) has kept a major challenge and hot topic in organic electronics research. In this study, we have used quantum chemical and molecular dynamics calculations in conjunction with the Marcus-Hush charge transfer model to investigate the photovoltaic properties of BBPQ-PC61BM. The results revealed that the BBPQ-PC61BM (BBPQ:7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido(2',3':5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one; PC61BM:(6, 6)-phenyl-C61-butyric acid methyl ester) system theoretically possesses a large open-circuit voltage (1.22 V), high fill factor (0.90), and high PCE of 9%-10%. The calculations also reveal that the BBPQ-PC61BM system has a medium-sized exciton binding energy (0.607 eV), with relatively small reorganization energies (0.345 and 0.355 eV) for its exciton-dissociation and charge-recombination processes. Based on a simplified molecular complex, the exciton dissociation rate constant, kdis, was estimated to be as large as 1.775×1013 s-1 at the BBPQPC61BM interface. In contrast, the charge-recombination rate constant, krec, was very small under the same conditions (<1.0 s-1), which indicated a rapid and efficient exciton-dissociation process at the donor-acceptor interface. Overall, our calculations show that the BBPQ-PC61BM system is a very promising organic solar cell system that is worthy of further research.
Keywords:BBPQ  PC61BM  Theoretical investigation  Photovoltaic property  Density functional theory  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号