首页 | 本学科首页   官方微博 | 高级检索  
     检索      

氧缺陷TiO2-B作为可充电锂离子电池负极材料的第一性原理研究
引用本文:孔令明,祝宝林,庞先勇,王贵昌.氧缺陷TiO2-B作为可充电锂离子电池负极材料的第一性原理研究[J].物理化学学报,2016,32(3):656-664.
作者姓名:孔令明  祝宝林  庞先勇  王贵昌
作者单位:1 太原理工大学化学化工学院, 太原 0300242 南开大学化学系, 先进能源材料教育部重点实验室, 天津 3000713 中国科学院煤炭化学研究所, 煤转化国家重点实验室, 太原 030001
基金项目:the State Key Program of Natural Science Foundation of Tianjin, China(13JCZDJC26800);Foundation of State Key Laboratory of Coal Conversion, China(J15-16-908);Natural Science Foundation of Shanxi Province, China(2013011012-8)
摘    要:利用对氧缺陷的TiO2-B材料进行密度泛函理论的计算,阐述了氧空穴对于TiO2-B材料的电化学性质的影响。计算研究主要聚焦于缺陷材料的锂离子迁移和电子导电性等基本问题。计算结果表明在低锂离子浓度下(x(Li/Ti)≤ 0.25),相比于无缺陷的TiO2-B,氧缺陷TiO2-B有着更高的插入电压和更低的b轴方向迁移活化能,意味着锂离子的嵌入也更容易,这对于可充电电池的充电过程是有利的。而在高浓度下(x(Li/Ti) = 1),锂饱和的氧缺陷TiO2-B相较于无缺陷的TiO2-B有着较低的插入电压,更有利于锂离子的脱嵌过程,这对于可充电电池的放电过程也是有利的。电子结构计算表明缺陷材料的禁带宽度在1.0-2.0 eV之间,低于无缺陷的材料的3.0 eV。主要态密度贡献者是Ti-Ov-3d,并且随着氧空穴的增加它的强度也变得更强。这就表明氧缺陷TiO2-B有更好的电子导电性。

关 键 词:TiO2-B  氧空穴  插入电压  迁移活化能  禁带宽  
收稿时间:2015-09-24

First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries
Ling-Ming KONG,Bao-Lin ZHU,Xian-Yong PANG,Gui-Chang WANG.First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries[J].Acta Physico-Chimica Sinica,2016,32(3):656-664.
Authors:Ling-Ming KONG  Bao-Lin ZHU  Xian-Yong PANG  Gui-Chang WANG
Institution:1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China;2. Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China;3. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
Abstract:Density functional theory calculations were carried out on oxygen-deficient TiO2-B to evaluate the effect of oxygen vacancies on its electrochemical properties. The computational studies focused on the lithium (Li)-ion transport and electronic conductivity of this defect-containing material. Calculations on TiO2-B with low Li-ion concentration (x(Li/Ti)≤ 0.25) suggest that compared with defect-free TiO2-B, oxygen-deficient TiO2-B has a higher intercalation voltage and lower migration activation energy along the b-axis channel. This facilitates Li-ion intercalation, which is beneficial for the charge process of rechargeable batteries. Meanwhile, for TiO2-B with high Li-ion concentration (x(Li/Ti) = 1), saturated oxygen-deficient TiO2-B with lower insertion voltage favors Li-ion deintercalation, which aids the discharge process. Electronic structure calculations suggest that the band gap of this defect-containing material is within 1.0-2.0 eV, which is narrower than that of defect-free TiO2-B (3.0 eV). The main contributor to the band-gap narrowing is the density of the Ti-Ov-3d state, which becomes much higher as the oxygen vacancy content increases, which increases electronic conductivity.
Keywords:TiO2-B  Oxygen vacancy  Intercalated voltage  Migration activation energy  Band gap  
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号