首页 | 本学科首页   官方微博 | 高级检索  
     


Boosting local quasi-likelihood estimators
Authors:Masao Ueki  Kaoru Fueda
Affiliation:1.Graduate School of Environmental Science,Okayama University,Tsushima, Okayama,Japan
Abstract:For likelihood-based regression contexts, including generalized linear models, this paper presents a boosting algorithm for local constant quasi-likelihood estimators. Its advantages are the following: (a) the one-boosted estimator reduces bias in local constant quasi-likelihood estimators without increasing the order of the variance, (b) the boosting algorithm requires only one-dimensional maximization at each boosting step and (c) the resulting estimators can be written explicitly and simply in some practical cases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号