首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design of a novel chip on glass package solution for CMOS image sensor device
Authors:Ching-Yang Chen  Yung-Ching Chao  De-Shin Liu  Zhen-Wei Zhuang
Institution:aDepartment of Mechanical Engineering, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi 621, Taiwan, ROC;bChipMOS Technologies INC., No. 5, Nan-ko Rd. 7, Science-Bases Industrial Park, Tainan 744, Taiwan, ROC
Abstract:This paper presents a chip-on-glass (COG) package solution for CMOS image sensors based on highly precise and reliable bumping and flip-chip bonding techniques. The package is fabricated using three core techniques, namely the damage-free image sensor bumping technique, the wafer form glass substrate patterned technique, and the damage-free flip-chip bonding technique. Since the proposed package concept is new, the effects of the package geometry and material properties on the package reliability are uncertain in the initial design stage. A three-dimensional nonlinear finite element model of the proposed CMOS image sensor package is created. In the simulations, the applied thermal load is cooled from 200 °C to ambient temperature (25 °C) to model the thermal deformation and warpage of the package during the practical ACF assembly cooling process. The design parameters influencing the reliability of the package, i.e. the material properties of the ACF, the thickness of the image chip and the thickness of the optical glass are investigated. Two control levels are specified for the chip, glass, and ACF factors and a 23 factorial design is created to determine the appropriate combination of material properties and geometric size. It is found that the glass thickness and the ACF properties significantly affect the thermal deformation of the package, while the chip and glass factors, and the interaction between them, significantly affect the warpage. Regression models are developed to perform a series of surface response simulations. Using the developed statistical tests and regression models, suitable material selection criteria and geometric sizes can be specified to satisfy various reliability considerations in the initial design stage.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号