首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnus’ expansion for time-periodic systems: Parameter-dependent approximations
Authors:Eric A Butcher  Ma&#x;en Sari  Ed Bueler  Tim Carlson
Institution:aDepartment of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA;bDepartment of Mathematics and Statistics, University of Alaska, Fairbanks, AK 99775, USA
Abstract:Magnus’ expansion solves the nonlinear Hausdorff equation associated with a linear time-varying system of ordinary differential equations by forming the matrix exponential of a series of integrated commutators of the matrix-valued coefficient. Instead of expanding the fundamental solution itself, that is, the logarithm is expanded. Within some finite interval in the time variable, such an expansion converges faster than direct methods like Picard iteration and it preserves symmetries of the ODE system, if present. For time-periodic systems, Magnus expansion, in some cases, allows one to symbolically approximate the logarithm of the Floquet transition matrix (monodromy matrix) in terms of parameters. Although it has been successfully used as a numerical tool, this use of the Magnus expansion is new. Here we use a version of Magnus’ expansion due to Iserles Iserles A. Expansions that grow on trees. Not Am Math Soc 2002;49:430–40], who reordered the terms of Magnus’ expansion for more efficient computation. Though much about the convergence of the Magnus expansion is not known, we explore the convergence of the expansion and apply known convergence estimates. We discuss the possible benefits to using it for time-periodic systems, and we demonstrate the expansion on several examples of periodic systems through the use of a computer algebra system, showing how the convergence depends on parameters.
Keywords:Magnus expansion  Time-periodic systems  Chebyshev polynomials
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号