首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pair interaction potentials with explicit polarization for molecular dynamics simulations of La(3+) in bulk water
Authors:Duvail Magali  Souaille Marc  Spezia Riccardo  Cartailler Thierry  Vitorge Pierre
Institution:Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR 8587, Université d'Evry Val d'Essonne, Boulevard F. Mitterrand, 91025 Evry Cedex, France.
Abstract:Pair interaction potentials (IPs) were defined to describe the La(3+)-OH(2) interaction for simulating the La(3+) hydration in aqueous solution. La(3+)-OH(2) IPs are taken from the literature or parametrized essentially to reproduce ab initio calculations at the second-order Moller-Plesset level of theory on La(H(2)O)(8) (3+). The IPs are compared and used with molecular dynamics (MD) including explicit polarization, periodic boundary conditions of La(H(2)O)(216) (3+) boxes, and TIP3P water model modified to include explicit polarization. As expected, explicit polarization is crucial for obtaining both correct La-O distances (r(La-O)) and La(3+) coordination number (CN). Including polarization also modifies hydration structure up to the second hydration shell and decreases the number of water exchanges between the La(3+) first and second hydration shells. r(La-O) ((1))=2.52 A and CN((1))=9.02 are obtained here for our best potential. These values are in good agreement with experimental data. The tested La-O IPs appear to essentially account for the La-O short distance repulsion. As a consequence, we propose that most of the multibody effects are correctly described by the explicit polarization contributions even in the first La(3+) hydration shell. The MD simulation results are slightly improved by adding a-typically negative 1r(6)-slightly attractive contribution to the-typically exponential-repulsive term of the La-O IP. Mean residence times are obtained from MD simulations for a water molecule in the first (1082 ps) and second (7.6 ps) hydration shells of La(3+). The corresponding water exchange is a concerted mechanism: a water molecule leaving La(H(2)O)(9) (3+) in the opposite direction to the incoming water molecule. La(H(2)O)(9) (3+) has a slightly distorded "6+3" tricapped trigonal prism D(3h) structure, and the weakest bonding is in the medium triangle, where water exchanges take place.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号