首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Second order explicitly correlated R12 theory revisited: a second quantization framework for treatment of the operators' partitionings
Authors:Noga Jozef  Kedzuch Stanislav  Simunek Ján
Institution:Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CHI, SK-84215 Bratislava, Slovakia. jozef.noga@savba.sk
Abstract:Second order R12 theory is presented and derived alternatively using the second quantized hole-particle formalism. We have shown that in order to ensure the strong orthogonality between the R12 and the conventional part of the wave function, the explicit use of projection operators can be easily avoided by an appropriate partitioning of the involved operators to parts which are fully describable within the computational orbital basis and complementary parts that involve imaginary orbitals from the complete orbital basis. Various Hamiltonian splittings are discussed and computationally investigated for a set of nine molecules and their atomization energies. If no generalized Brillouin condition is assumed, with all relevant partitionings the one-particle contribution arising in the explicitly correlated part of the first order wave function has to be considered and has a significant role when smaller atomic orbital basis sets are used. The most appropriate Hamiltonian splitting results if one follows the conventional perturbation theory for a general non-Hartree-Fock reference. Then, no couplings between the R12 part and the conventional part arise within the first order wave function. The computationally most favorable splitting when the whole complementary part of the Hamiltonian is treated as a perturbation fails badly. These conclusions also apply to MP2-F12 approaches with different correlation factors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号