首页 | 本学科首页   官方微博 | 高级检索  
     


Information Dark Energy Can Resolve the Hubble Tension and Is Falsifiable by Experiment
Authors:Michael Paul Gough
Affiliation:Department of Engineering and Design, University of Sussex, Brighton BN1 9QT, UK;
Abstract:We consider the role information energy can play as a source of dark energy. Firstly, we note that if stars and structure had not formed in the universe, elemental bits of information describing the attributes of particles would have exhibited properties similar to the cosmological constant. The Landauer equivalent energy of such elemental bits would be defined in form and value identical to the characteristic energy of the cosmological constant. However, with the formation of stars and structure, stellar heated gas and dust now provide the dominant contribution to information energy with the characteristics of a dynamic, transitional, dark energy. At low redshift, z < ~1.35, this dark energy emulates the cosmological constant with a near-constant energy density, w = −1.03 ± 0.05, and an energy total similar to the mc2 of the universe’s ∼1053 kg of baryons. At earlier times, z > ~1.35, information energy was phantom, differing from the cosmological constant, Λ, with a CPL parameter difference of ∆wo = −0.03 ± 0.05 and ∆wa = −0.79 ± 0.08, values sufficient to account for the H0 tension. Information dark energy agrees with most phenomena as well as Λ, while exhibiting characteristics that resolve many tensions and problems of ΛCDM: the cosmological constant problem; the cosmological coincidence problem; the H0 tension, and the σ8 tension. As this proposed dark energy source is not usually considered, we identify the expected signature in H(a) that will enable the role of information dark energy to be falsified by experimental observation.
Keywords:Landauer’  s principle, dark energy theory, dark energy experiments
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号