首页 | 本学科首页   官方微博 | 高级检索  
     


Robust stability analysis of stochastic neural networks with Markovian jumping parameters and probabilistic time‐varying delays
Authors:Chandrasekar Pradeep  Arunachalam Chandrasekar  Rangasamy Murugesu  Rajan Rakkiyappan
Affiliation:1. Department of Science and Humanities, Sri Ramakrishna Institute of Technology, Pachapalayam, Coimbatore, Tamil Nadu, India;2. Department of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India;3. Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu, India
Abstract:This article discusses the issue of robust stability analysis for a class of Markovian jumping stochastic neural networks (NNs) with probabilistic time‐varying delays. The jumping parameters are represented as a continuous‐time discrete‐state Markov chain. Using the stochastic stability theory, properties of Brownian motion, the information of probabilistic time‐varying delay, the generalized Ito's formula, and linear matrix inequality (LMI) technique, some novel sufficient conditions are obtained to guarantee the stochastical stability of the given NNs. In particular, the activation functions considered in this article are reasonably general in view of the fact that they may depend on Markovian jump parameters and they are more general than those usual Lipschitz conditions. The main features of this article are described in the following: first one is that, based on generalized Finsler lemma, some improved delay‐dependent stability criteria are established and the second one is that the nonlinear stochastic perturbation acting on the system satisfies a class of Lipschitz linear growth conditions. By resorting to the Lyapunov–Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established using an efficient LMI approach. Finally, two numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–72, 2016
Keywords:generalized Finsler lemma  Lyapunov–  Krasovskii functional  Markovian jumping parameters  neural networks  probabilistic time‐varying delays
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号