首页 | 本学科首页   官方微博 | 高级检索  
     


The elastic anisotropy of nematic elastomers
Authors:H. Finkelmann  A. Greve  M. Warner
Affiliation:Institut für Makromoleculare Chemie, Universit?t Freiburg, D79104 Freiburg, Germany, DE
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK, GB
Abstract:We examine the robustness of order in nematic elastomers under mechanical strains imposed along and perpendicularly to the director when director rotation is prohibited. In contrast to electric and magnetic fields applied to conventional nematics, mechanical fields are shown theoretically and experimentally to greatly affect the degree of nematic order and related quantities. Unlike in liquid nematics, one can impose fields perpendicular to the director, thereby inducing biaxial order which should be susceptible to experimental detection. Nematic elastomers with unchanging director and degree of order should theoretically have the same elastic moduli for longitudinal and transverse extensions. This is violated when nematic order is permitted to relax in response to strains. Near the transition we predict the longitudinal modulus to be smaller than the transverse modulus; at lower temperatures the converse is true, with a crossover a few degrees below the transition. The differences are ascribed to the different temperature dependence of the stiffness of uniaxial and biaxial order. We synthesised side chain single-crystal nematic polymer networks, performed DSC, X-ray, birefringence, and thermo-mechanical characterisations, and then obtained linear moduli from stress-strain measurements. Received 29 September 2000
Keywords:PACS. 61.30.-v Liquid crystals –   82.70.-y Disperse systems   complex fluids –   81.40.Jj Elasticity and anelasticity, stress-strain relations.
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号