首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic versus kinetic products of DNA alkylation as modeled by reaction of deoxyadenosine.
Authors:W F Veldhuyzen  A J Shallop  R A Jones  S E Rokita
Affiliation:Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
Abstract:Alkylating agents that react through highly electrophilic quinone methide intermediates often express a specificity for the weakly nucleophilic exocyclic amines of deoxyguanosine (dG N(2)) and deoxyadenosine (dA N(6)) in DNA. Investigations now indicate that the most nucleophilic site of dA (N1) preferentially, but reversibly, conjugates to a model ortho-quinone methide. Ultimately, the thermodynamically stable dA N(6) isomer accumulates by trapping the quinone methide that is transiently regenerated from collapse of the dA N1 adduct. Alternative conversions of the dA N1 to the dA N(6) derivative by a Dimroth rearrangement or other intramolecular processes are not competitive under neutral conditions, as demonstrated by studies with [6-(15)N]-dA. Both a model quinone methide precursor and its dA N1 adduct yield a similar profile of deoxynucleoside products when treated with an equimolar mixture of dC, dA, dG, and T. Consequently, the most readily observed products of DNA modification resulting from reversible reactions may reflect thermodynamic rather than kinetic selectivity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号