首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Statistical aspects of the identification of material parameters for elasto-plastic models
Authors:R Kreißig  U Benedix  U-J Görke
Institution:(1) Institute of Mechanics, Chemnitz University of Technology, Str. der Nationen 62, D-09111 Chemnitz, Germany, DE
Abstract:Summary The presented method to identify material parameters for inelastic deformation laws is based on the numerical analysis of inhomogeneous stress and strain fields received from suitable experiments. Tensile and bending tests were carried out to obtain elastic and hardening parameters. The deformation law for small elasto-plastic strains is presented as a system of nonlinear differential and algebraic equations (DAE) consisting of the stress–strain relation, evolution equations for the internal variables and the yield condition. Different rules for the evolution equations of isotropic, kinematic and distorsional hardening are proposed. The DAE are discretized using an implicit Euler method, and the resulting system of nonlinear algebraic equations is solved using the Newton method. Deterministic optimization procedures are preferred to identify material parameters from a least-squares functional of numerical and measured comparative quantities. The gradient of the objective function was calculated using a semianalytical sensitivity analysis. Due to measurement errors, the optimal sets of material parameters are non unique. The approximate estimation of confidence regions and the calculation of correlation coefficients is presented. The results of several optimization processes for material parameters of elasto-plastic deformation laws show a good agreement between measured and calculated values, but they show also problems which may occur if systematic errors will not be recognized and deleted. Received 30 September 1999; accepted for publication 8 March 2000
Keywords:  Plasticity  small strains  optimization  sensitivity analysis  statistics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号