首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量学习机的HIV-1蛋白酶抑制剂的活性预测
引用本文:饶含兵,李泽荣,陈晓梅,李象远. 基于支持向量学习机的HIV-1蛋白酶抑制剂的活性预测[J]. 化学学报, 2007, 65(3): 197-202
作者姓名:饶含兵  李泽荣  陈晓梅  李象远
作者单位:四川大学化学学院,成都,610064;四川大学化工学院,成都,610065
基金项目:国家自然科学基金(No.20572073)资助项目
摘    要:为了预测人体免疫缺陷蛋白酶抑制剂的活性, 计算了表征分子的组成和拓扑特征的462个分子描述符, 用Kennard-Stone方法和随机方法进行了训练集和测试集设计, 用Monte Carlo 模拟退火方法进行变量筛选, 并分别用神经网络, 逻辑回归, k-近邻和支持向量学习机方法建立了HIV-1蛋白酶的抑制剂模型. 结果表明支持向量学习机优于其余机器学习方法, 用SVM方法所建立的最优模型的最后预测正确率达到98.24%.

关 键 词:蛋白酶抑制剂  分子描述符  机器学习方法  变量筛选
收稿时间:2006-06-12
修稿时间:2006-06-122006-09-23

Activity Prediction of HIV-1 Protease Inhibitors Using Support Vector Machine
RAO,Han-Bing,LI,Ze-Rong,CHEN,Xiao-Mei,LI,Xiang-Yuan. Activity Prediction of HIV-1 Protease Inhibitors Using Support Vector Machine[J]. Acta Chimica Sinica, 2007, 65(3): 197-202
Authors:RAO  Han-Bing  LI  Ze-Rong  CHEN  Xiao-Mei  LI  Xiang-Yuan
Affiliation:a College of Chemistry, Sichuan University, Chengdu 610064;b College of Chemical Engineering, Sichuan University, Chengdu 610065
Abstract:In order to predict the activity of HIV protease inhibitors, constitutional and topological descrip- tors, in total 462, were calculated to characterize the structural and physicochemical properties for each molecule under study. The Kennard-Stone method and a random method were adopted to design the training set and the test set. Monte Carlo simulated annealing method was applied to the variable selection. Machine learning methods including support vector machine, artificial neural network, logistic regression, and k-nearest neighbor, were applied to the development of inhibitor models. It was shown that the support vec- tor machine method outperforms the other methods and the final model developed using the SVM method gave a prediction accuracy of 98.24%.
Keywords:
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《化学学报》浏览原始摘要信息
点击此处可从《化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号