首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cellulose acetate/poly(methyl methacrylate) interpenetrating networks: synthesis and estimation of thermal and mechanical properties
Authors:Dan Aoki  Yoshikuni Teramoto  Yoshiyuki Nishio
Institution:(1) Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan;
Abstract:IPN-type composites consisting of cellulose acetate (CA) and poly(methyl methacrylate; PMMA) were successfully synthesized in film form. In this synthesis, a mercapto group (SH)-containing CA, CA-MA, was prepared in advance by esterification of CA with mercaptoacetic acid, and then intercomponent cross-linking between CA-MA and PMMA was attained by thiol–ene polymerization of methyl methacrylate (MMA) onto the CA-MA substrate. For comparison, polymer synthesis was also attempted to produce a semi-IPN type of composites comprising CA and cross-linked PMMA, via copolymerization of MMA and ethylene glycol dimethacrylate as cross-linker in a homogeneous system containing CA solute. Thermal and mechanical properties of thus obtained polymer composites were investigated by differential scanning calorimetry, dynamic mechanical analysis, and a tensile test, in correlation with the mixing state of the essentially immiscible cellulosic and methacrylate polymer components. It was shown that the specific IPN technique using thiol–ene reactions usually resulted in a much better compatibility-enhanced polymer composite, which exhibited a higher tensile strength and even an outstanding ductility without parallel in any film sample of CA, PMMA, and their physical blends.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号