首页 | 本学科首页   官方微博 | 高级检索  
     


On the Reynolds number scaling of vorticity production at no-slip walls during vortex-wall collisions
Authors:G. H. Keetels  W. Kramer  H. J. H. Clercx  G. J. F. van Heijst
Affiliation:(1) Universit? de Toulouse; INPT, UPS; IMFT (Institut de M?canique des Fluides de Toulouse);, All?e Camille Soula, 31400 Toulouse, France;(2) CNRS; IMFT;, 31400 Toulouse, France
Abstract:Recently, numerical studies revealed two different scaling regimes of the peak enstrophy Z and palinstrophy P during the collision of a dipole with a no-slip wall [Clercx and van Heijst, Phys. Rev. E 65, 066305, 2002]: Z μ Re0.8{Zpropto{rm Re}^{0.8}} and P μ Re2.25{Ppropto {rm Re}^{2.25}} for 5 × 102 ≤ Re ≤ 2 × 104 and Z μ Re0.5{Zpropto{rm Re}^{0.5}} and P μ Re1.5{Ppropto{rm Re}^{1.5}} for Re ≥ 2 × 104 (with Re based on the velocity and size of the dipole). A critical Reynolds number Re c (here, Rec ? 2×104{{rm Re}_capprox 2times 10^4}) is identified below which the interaction time of the dipole with the boundary layer depends on the kinematic viscosity ν. The oscillating plate as a boundary-layer problem can then be used to mimick the vortex-wall interaction and the following scaling relations are obtained: Z μ Re3/4, P μ Re9/4{Zpropto{rm Re}^{3/4}, Ppropto {rm Re}^{9/4}} , and dP/dt μ Re11/4{propto {rm Re}^{11/4}} in agreement with the numerically obtained scaling laws. For Re ≥ Re c the interaction time of the dipole with the boundary layer becomes independent of the kinematic viscosity and, applying flat-plate boundary-layer theory, this yields: Z μ Re1/2{Zpropto{rm Re}^{1/2}} and P μ Re3/2{Ppropto {rm Re}^{3/2}}.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号