首页 | 本学科首页   官方微博 | 高级检索  
     


Metallic liquid hydrogen and likely Al2O3 metallic glass
Authors:W. J. Nellis
Affiliation:(1) Materials Science and Engineering Program, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA;(2) Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
Abstract:Dynamic compression has been used to synthesize liquid metallic hydrogen at 140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might be a metallic glass at ∼ 300 GPa. The mechanism of metallization in both cases is probably a Mott-like transition. The strength of sapphire causes shock dissipation to be split differently in the strong solid and soft fluid. Once the 4.5-eV H-H and Al-O bonds are broken at sufficiently high pressures in liquid H2 and in sapphire (single-crystal Al2O3), electrons are delocalized, which leads to formation of energy bands in fluid H and probably in amorphous Al2O3. The high strength of sapphire causes shock dissipation to be absorbed primarily in entropy up to ∼400 GPa, which also causes the 300-K isotherm and Hugoniot to be virtually coincident in this pressure range. Above ∼400 GPa shock dissipation must go primarily into temperature, which is observed experimentally as a rapid increase in shock pressure above ∼400 GPa. The metallization of glassy Al2O3, if verified, is expected to be general in strong oxide insulators. Implications for Super Earths are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号