首页 | 本学科首页   官方微博 | 高级检索  
     


Rules of supermolecular structure formation in sheared isotactic polypropylene melts
Authors:J. Varga  J. Karger-Kocsis
Affiliation:Institut für Verbundwerkstoffe GmbH, Universität Kaiserslautern, Pf. 3049, D-67653 Kaiserslautern, Germany
Abstract:Shear-induced crystallization of isotactic polypropylene (iPP) homo-, block, and random copolymers was studied and compared to that in quiescent melt. It was evidenced by means of the thermo-optical technique that melt-shearing, caused by fiber pulling, is associated with the development of α-row-nuclei. The surface of the in situ formed α-row-nuclei may induce the growth of the β-modification of iPP resulting in a cylindrite of polymorphous composition. The polymorphous composition is controlled by the temperature-dependent relative growth rate of the α- and β-iPP for which a model explanation was given. The β-nucleation ability of the α-row-nuclei is lost by melt-shearing at high temperature or remelting. This was attributed to a coverage of the β-nuclei by the α-phase. The structural memory of the supermolecular structures was studied in repeated melting and crystallization cycles and discussed. It was found that the quality of the fiber did not influence the mechanisms concluded. The shear-induced crystallization of propylene block copolymers was highly analogous to the homopolymers. In case of the random copolymers, however, crystallization in sheared melt resulted in an α-cylindritic structure, because for propylene random copolymers the growth rate of the α-modification is always higher than that of the β. It was also demonstrated that the mechanism of shear-induced crystallization was unaffected when the crystallizing PP melt contained selective β-nucleants. © 1996 John Wiley & Sons, Inc.
Keywords:α-polypropylene  β-polypropylene  crystallization  cylindrite  isotactic polypropylene  melting  nucleation  quiescent melt  sheared melt  supermolecular structure  thermo-optical study  transcrystallization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号