首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prototypal dithiazolodithiazolyl radicals: synthesis, structures, and transport properties
Authors:Beer Leanne  Britten James F  Brusso Jaclyn L  Cordes A Wallace  Haddon Robert C  Itkis Mikhail E  MacGregor Douglas S  Oakley Richard T  Reed Robert W  Robertson Craig M
Institution:Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Abstract:New synthetic routes to 1,2,3-dithiazolo-1,2,3-dithiazolylium salts, based on double Herz condensations of N-alkylated 2,6-diaminopyridinium salts with sulfur monochloride, have been developed. The two prototypal 1,2,3-dithiazolo-1,2,3-dithiazolyl radicals HBPMe and HBPEt have been prepared and characterized in solution by cyclic voltammetry and EPR spectroscopy. Measured electrochemical cell potentials and computed (B3LYP/6-31G) gas-phase disproportionation enthalpies favor a low on-site Coulombic repulsion energy U in the solid state. The crystal structures of HBPR (R = Me, Et) have been determined by X-ray crystallography (at 293 K). Both consist of slipped pi-stacks of undimerized radicals, with many close intermolecular S- - -S contacts. Magnetic, conductivity, and optical measurements have been performed and the results interpreted in light of extended Hückel band calculations. The crystalline materials are paramagnetic above 100 K, with room-temperature conductivities sigma(RT) of 10(-5)-10(-6) S cm(-1); the slightly greater conductivity of the R = Et compound can be associated with a more well developed band structure. We suggest a Mott-Hubbard insulator ground state for these materials, with an on-site Coulomb repulsion energy U of about 1.0 eV.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号