首页 | 本学科首页   官方微博 | 高级检索  
     


Calculation of an axisymmetric turbulent wall jet over a surface of convex curvature
Authors:J.F. Morrison  D.G. Gregory-Smith
Affiliation:1. Department of Aeronautics, Imperial College, UK;2. Department of Engineering, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK
Abstract:One of the many applications of curved wall jets of engineering importance is the Coanda Flare, which is used for burning waste gases in the petroleum industry and which gave rise to this work. The gas jet flows over an axisymmetric tulip shaped body, entraining ambient air and so promoting clean combustion. The object of this work was to calculate the development of the jet with the extra rates of strain imposed by both longitudinal curvature and divergence. A differential ‘partially-parabolic’ technique was used with uncoupling of the streamwise and cross-stream momentum equations, leading to an efficient computer program. The extra rates of strain were modelled by corrections to a mixing length model with the two effects being assumed to be additive. The calculation method was compared with seven test ccases of experimental data. The first five were from published literature, and included the plane wall jet and axisymmetric free jet, and the separate effects of longitudinal curvature and divergence. The lost two cases were measurements of the wall jet flow over a model Coanda Flare. The calculation method gave generally good results for the main features of the flow such as growth rate and velocity decay. Details of the flow were not so well predicted, particularly the turbulent shear stress, as a result of the relatively simple turbulence model employed. The calculation method should provide a useful engineering tool, but some profitable developments could be made, particularly in the area of turbulence modelling.
Keywords:fluid mechanics  gas flow  modelling  Coanda effect  flares
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号