首页 | 本学科首页   官方微博 | 高级检索  
     


Stagnation point heat transfer from laminar,high temperature methane flames
Authors:M. Fairweather  J.K. Kilham  S. Nawaz
Affiliation:1. Department of Fuel and Energy, The University, Leeds LS2 9JT, UK
Abstract:Combustion of methane-rich fuels frequently provides forced convective heating in industry, and the ability to predict the rate of heat transfer from such flames to solid surfaces is often desirable. Mathematical modelling of stagnation point heat flux has been achieved by numerical solution of the boundary layer equations, and by an analytical equation modified to include the effects of chemical reaction in the free stream flow and to allow for the enhancement in heat flux caused by the diffusion and exothermic recombination of reactive species in the boundary layer surrounding the heat receiving body. Predictions from these models have been compared with experimental data obtained in high temperature methane flames of various equivalence ratios. Within the equilibrium region of these flames, predictions from the modified analytical equation based on total Lewis numbers equal to and greater than one form a tight envelope around the experimental results, and hence provide a relatively simple method of predicting heat flux. Numerical solutions tend to slightly underestimate predictions from the analytical equation and experimental data, although agreement with the alternative prediction method increases with the surface temperature of the heat receiving body
Keywords:heat transfer  convection  stagnation point  flames  methane
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号