首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Conformational stability and vibrations of aminopropylsilanol molecule
Authors:Bistrici? Lahorija  Volovsek Vesna  Danani? Vladimir  Sapi? Iva Movre
Institution:Department of Applied Physics, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia. lahorija.bistricic@fer.hr
Abstract:Density functional theory (DFT), using the B3-LYP/6-31G(d,p) method have been used to investigate the conformation and vibrational spectra of aminopropylsilanetriol (APST) NH2CH2CH2CH2Si(OH)3. The potential function for CCCSi torsion gives rise to two distinct conformers trans and gauche. The predicted energy of the more stable trans conformer is 337 cm-1 less than the energy of gauche conformer. The calculated barriers to the conformation interchange are: 1095, 2845 and 438 cm-1 for the trans to gauche, gauche to gauche and gauche to trans conformers, respectively. For the trans conformer the potential energy curve for the Si(OH)3 groups torsion in APST has been calculated changing the HOSiC dihedral angle. The barrier for the internal rotation of 3065 cm-1 has been obtained. The optimized molecular structure of APST dimer calculated for trans conformer has a SiOSi angle of 143.2 degrees, and a SiOSi bond length of 0.164 nm. A complete vibrational assignment for both conformers as well as for trans-dimer is supported by the normal coordinate analysis, calculated IR intensities as well as Raman activities. On the basis of the results, the vibrational spectra of APST aqueous solution and APST polymer have been analyzed. The average error between the observed and calculated frequencies is 14 cm-1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号