首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimization of structural variables of a flextensional transducer by the statistical multiple regression analysis method
Authors:Kang Kookjin  Roh Yongrae
Institution:Department of Sensor Engineering, Kyungpook National University, 1370 Sankyukdong, Bukgu, Daegu 702-701, Korea.
Abstract:The performance of an acoustic transducer is determined by the effects of many structural variables, and in most cases the influences of these variables are not linearly independent of each other. To achieve optimal performance of an acoustic transducer, we must consider the cross-coupled effects of its structural variables. In this study, with the finite-element method, the variation of the operation frequency and sound pressure of a flextensional transducer in relation to its structural variables is analyzed. Through statistical multiple regression analysis of the results, functional forms of the operation frequency and sound pressure of the transducer in terms of the structural variables were derived, with which the optimal structure of the transducer was determined by means of a constrained optimization technique, the sequential quadratic programming method of Phenichny and Danilin. The proposed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号