首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Penetration Processes of Red Mud Filtrate in a Porous Medium by Seepage
Authors:Bing Bai  Jiaqing Wang  Zhenqian Zhai  Tao Xu
Institution:1.School of Civil Engineering,Beijing Jiaotong University,Beijing,People’s Republic of China
Abstract:This study investigated the effect of flow velocity, the concentration of red mud particles, and the concentration of \(\hbox {OH}^{-}\) ions on the penetration processes of red mud filtrate with fine particles in a porous medium by seepage. The results show that the peak concentrations of the breakthrough curves (BTCs) of red mud particles with high alkalinity are much higher than that with low alkalinity, indicating that the existence of \(\hbox {OH}^{-}\) ions enhances the repulsive interaction between red mud particles and between red mud particles and the matrix and promotes the migration of red mud particles. The red mud particles are more easily absorb onto the surface of porous medium or embedded in the matrix due to the greater adsorption between red mud particles and porous dielectric matrix than silicon powders. The penetration velocity of these red mud particles is often slower than water velocity due to the capture effect by straining and the detours path effect, especially in the case of high injection concentration and low alkalinity. Both the recovery rate and modal size of recovered particles increase with the increase in flow velocity, and the recovery rate of particles with high alkalinity is higher than that of particles with low alkalinity, which can be attributed to the stronger repulsive interaction between particles and between particles and the matrix. An analytical solution for the migration of particles in a porous medium in which the contaminant intensity varies with time has been developed from the elementary solution, and the predicted BTCs for a repeated three-pulse injection are in good accordance with the experimental results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号