首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling of Coal Fine Migration During CBM Production in High-Rank Coal
Authors:Su-Yang Zhu  Xiao-Long Peng  Zhi-Min Du  Chao-Wen Wang  Peng Deng  Fei Mo  Yu Lei  Mingwei Wang
Affiliation:1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu,People’s Republic of China;2.School of Petroleum and natural gas Engineering,Southwest Petroleum University,Chengdu,People’s Republic of China
Abstract:During CBM (coalbed methane) production, the interaction of coal fracture surface with water flow commonly generates and starts coal fine flow. Part of flowing coal fines deposit in coal fracture system due to water production reduction and methane production increase. The fine sedimentation results in the reduction of coal permeability and well productivity. Despite the increasing awareness of the importance of fine migration, limited research has been carried out on the flow model of coal fine coupled with water and gas. In this paper, a flow model of coal fine is established coupled with water and gas flow, taking coal fine generation, migration and sedimentation process into consideration. Then, case simulations are conducted to illustrate effects of water production schedule, permeability performance and gas content on production performance in flow model. The simulation results indicate that methane rate with the lowest initial water rate is observed to have the highest production in late production period. This is mainly due to the reason that the low water flow cannot generate and start the flow of coal fine. Further, the case with high initial water production has faster gas and water flow rate, thus higher coal fine generation rates, which can improve well productivity at earlier production period. As water production declines quickly, both permeability and production performance decrease, which leads to the loss of well productivity. Meanwhile, higher gas content will lead to a faster water production decline at late production period. This indicates that a portion of coal fines plugged in the fracture as water production deceases and the CBM reservoir with high gas content should not adopt a high initial water production schedule.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号