首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence
Authors:Saunders Aaron E  Ghezelbash Ali  Sood Preeti  Korgel Brian A
Institution:Department of Chemical Engineering, Texas Materials Institute, Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712-1062, USA.
Abstract:Colloidal CdS nanorods with diameters near 4 nm and narrow size distributions ( approximately +/-10%) were synthesized up to 300 nm long by a sequential reactant injection technique that utilizes phosophonic acids as capping ligands. The phosphonic acid strongly passivates the nonpolar CdS surfaces and sequential reactant injection provides controlled CdS formation kinetics to enable heterogeneous and facet-selective CdS deposition on the more reactive {002} surfaces. With this process, the nanorod length can be systematically increased by increasing reactant addition to extend nanorod growth. The phosphonic acid concentration, however, is quite important, as "low" concentrations allow radial deposition and branching to occur. These high aspect ratio (>100) CdS nanorods luminesce with relatively high efficiencies of 10.8% quantum yield at room temperature. The luminescence, however, mostly arises from trap-related recombination, and the emission is significantly red-shifted from the absorption edge. Various surface passivation treatments were explored to eliminate trap emission and increase the luminescence quantum yield. Thiol and amine passivation both significantly reduced trap emission and enhanced band-edge emission, but the total luminescence quantum yields dropped significantly, with a maximum measured value of 1.5% for the amine-passivated CdS nanorods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号