首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Deformation of cylindrical composite shells under combined dynamic loading
Authors:A E Bogdanovich  A E Feldmane
Institution:(1) Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, USSR
Abstract:Conclusions A procedure has been shown for calculating the stress-strain state of cylindrical multilayer shells made from composite materials under the combined action of dynamic axial compression and dynamic external pressure, as well as with different variants of combined loading with static and dynamic forces. An investigation has been made of the effect on the mode of the buckled shell surface of the ratio of the application rate of dynamic loads; ranges of loading rates have been established in which stresses predominate caused either by axial compression or external pressure. It has been shown that, as a result of preliminary static loading, a marked change occurs in the initial imperfections of the shell mode which affects subsequent dynamic buckling. To calculate the time when the first defect occurs and its location in the shell body, a procedure has been devised for layer-by-layer strength analysis employing a tensor-polynomial criterion. It was demonstrated that the level of preliminary static loading noticeably affects the time until the first failure of the layer, not only a reduction of this time being possible with an increase in the static loads, but also an increase in it.We should also point out the work in 10] where it is shown that it is possible to weaken the susceptibility of the shell to initial imperfections when internal pressure is applied.Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 461–473, May–June, 1981.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号